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Summary 

A new model is derived to calculate the solute diffusion coefficient through 
heterogeneous membranes consisting of a crosslinked, swollen phase and an 
impermeable, crystalline phase. The solute diffusion coefficient is shown to 
depend on various structural characteristics of the amorphous permeable phase 
and on the volume fraction of the impermeable phase. 

Introduction 

The transport of solute through heterogeneous membranes consisting of 
two phases is affected by the relative volume fraction of each phase in the 
system. Of particular interest in separation science is the situation of solute 
transport through a two-phase system, where one phase is totally impermeable to 
the solute. Such is the case with solute transport in semicrystalline membranes 
where the crystallites constitute an impermeable phase, randomly distributed 
throughout a crosslinked, permeable phase (1). In this case and under ideal 
conditions (lack of crystallite orientation), the solute diffusivity, permeability and 
partition coefficients are independent of position in the membrane and constant 
within each phase. 

In this contribution we develop a new model that can be used to calculate 
the solute diffusion coefficient from knowledge of structural characteristics of the 
two phases. 

Development of Theoretical Model 

Solute transport in semicrystalline network membranes occurs only through 
amorphous regions consisting of amorphous, crosslinked polymer chains and 
swelling agent. As shown in Figure 1, this type of structure may be 
approximated by a set of cylindrical, amorphous regions of radii, r, and 
orientation, t~, which is specified by the directional and rotational angles, 0 and 
dp, respectively. The region surrounding these amorphous structures is an 
impermeable crystalline phase. 
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Figure 1. Schematic representation of an equilibrium swollen semicrystalline 
polymer membrane showing the amorphous "pores" and the crystalline structure 
creating the walls of the hypothetical cylindrical "pores." 

The mass flux of solute i through a given amorphous region is 
Ji,l(r,l) 81(0 ). The unit mass flux, Ji,I, depends only on the radius, r, and the 
length coordinate of the straight pore segment, l, of any given permeable phase, 
and the unit vector, 81, is a function of the orientation only. If the volume 
fraction of the amorphous regions per unit radius of amorphous region and 
orientation 0 is defined as n(r ,~) ,  then the total average mass flux of solute i 
over the entire network can be written as 

Ji = f f ~l(ll J) Ji,t(r,l) n(r,O) dr dO (I) 
r 

The unit flux of solute in a given cylinder, Ji,l(r,1) can be written as 

1 dCi (2) 
Ji'l(r'l) = -  fl(r) dl 

Using equation (1) and (2), the total flux J in the form of a vector matrix 
may be written as follows. 

[J] = - f f [ f ( r ) ] - lg l (o)  (81(~) �9 V[CI) n(r,~b) dr d ,  (3) 
r r 

where J is the vector matrix. The mass flux is also expressed as 
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[j]  = - f [fCr)] -~ K(r)" v [ c ]  d.~'(r)  (4) 
r = O  

where K (r) is a second order tensor. This parameter is proportional to the ease 
by which a molecule travels in the various amorphous regions, and va'(r) is the 
volume fraction of all the amorphous regions with radii smaller than or equal to 
r. Here, K (r) and Va'(r) are expressed in functional form as 

,r = 
f 81(~)81(~)n(r,~ ) d~ 
* (S) 

fn ( r ,0 )  dO 
$ 

and 

r 

u a'(r) = f f n ( r , , ) d ,  dr (6) 
r =0  O 

l~ = ~a  + ~s = 1 -- ~c 
(7) 

The necessary volume fractions are the equilibrium swelling agent volume 
fraction, u s, the equilibrium amorphous polymer volume fraction, va, and the 
equilibrium crystalline polymer volume fraction in the swollen state, re- 

Equation (4) with the definitions of equation (5) and (6) is the final form 
of the new model. 

Discussion 
The final equation of the model (equation (4)) indicates that the solute flux 

through the heterogeneous system is a function of the volume fraction of the 
amorphous polymer (i.e. the permeable phase) and the tortuosity of the 
amorphous diffusional path. 

A simplified form can be obtained for the case of uniform amorphous 
regions. Then, the solute flux may be expressed as 

J l  - 
(Va + Vs)K d C i  ( 8 )  

f(r]) dx 

A solute diffusion coefficient through the semicrystalline polymer, De, may 
be defined according to equation (9) 

D~ = 
(v a + vs)Da (1-"e)Da 

T T 

In this equation, the scalar quantity -r denotes the 

(9) 

tortuosity of the 
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diffusional path in the amorphous regions (2) and replaces its reciprocal value of 
K. In addition, the topological factor f(rl) has been replaced by the solute 
diffusion coefficient in the amorphous phase, D a. 

The diffusion coefficient D a refers to the swollen, amorphous, crosslinked 
portion of the system; it is determined by use of other physical models for 
diffusion in purely amorphous membranes (3,4). The value of x is 
approximately equal to 3.0 for the systems analyzed here (2), and the 
equilibrium volume fractions, ma, m s and m e, are measured experimentally or 
predetermined. For example, for diffusion of solutes through a semicrystalline 
membrane where the amorphous regions are highly swollen, use of the Peppas- 
Reinhart model (3) in conjunction with equation (9) leads to the following 
equation for the calculation of D c. 

Dc _ (1-vc)Dw f[ Mc - M: -axr[lsva (10) 
M~ Mc ] exp [ ~ ] 

Similarly, for solute diffusion in a semicrystalline membrane with 
moderately or poorly swollen amorphous regions, use of the Peppas-Moynihan 
model (4) gives 

De = (1-ve)Dw f(ua-3/4) exp[k3(Mc_Mn)_wr21s~(V)] (11) 
T 

In both equations, D w is the solute diffusion coefficient in pure water, r s is 
the molecular radius of the solute, I s is its characteristic size, Vw is the water free 
volume, M c is the n__umber average molecular weight between crosslinks in the 
amorphous phase, Ma_is the number average molecular weight of the polymer 
before crosslinking, M~ is the minimum value of M c below which the solute 
cannot diffuse, q~(V) is a function of the free volume of the membrane, and k 3 is 
a constant (see also ref. (4)). 

It is thus concluded, that contrary to previous belief (1), the model of 
solute diffusion in a heterogeneous system is rather complex and requires 
incorporation of the structural characteristics of both phases. 
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